Azure Data Engineering Full Stack
Azure data engineers are responsible for data-related tasks that include provisioning data storage services, batch data and ingesting streaming, implementing security requirements, transforming data, implementing data retention policies, identifying performance bottlenecks, and accessing external data sources. In the world of …
Overview
Azure data engineers are responsible for data-related tasks that include provisioning data storage services, batch data and ingesting streaming, implementing security requirements, transforming data, implementing data retention policies, identifying performance bottlenecks, and accessing external data sources. In the world of big data, raw, unorganized data is often stored in relational, non-relational, and other storage systems. However, on its own, raw data doesn’t have the proper context or meaning to provide meaningful insights to analysts, data scientists, or business decision makers.
Big data requires a service that can orchestrate and operationalize processes to refine these enormous stores of raw data into actionable business insights. Azure Data Factory Training in Hyderabad is a managed cloud service that’s built for these complex hybrid extract-transform-load (ETL), extract-load-transform (ELT), and data integration projects.
For example, imagine a gaming company that collects petabytes of game logs that are produced by games in the cloud. The company wants to analyze these logs to gain insights into customer preferences, demographics, and usage behavior. It also wants to identify up-sell and cross-sell opportunities, develop compelling new features, drive business growth, and provide a better experience to its customers.
Azure Data Factory:
Module 1: Azure Data Factory Introduction
- What is Azure Data Factory(ADF)?
- Azure Data Factory Key Components
- Pipeline
- Activity
- Linked Service
- Data Set
- Integration Runtime
- Triggers
- Data Flows
- Create Azure Bolb Storage Account
- Create Azure data lake Storage Gen2 Account
- Create Azure SQL Database
- Creation of Azure Data Factory Resourse
Module 2: Working with Copy Data Activity
- Understanding Azure Data Factory UI
- Data Ingestion from Blob Storage Service to Azure SQL Database
- Data Ingestion from Azure Blob Storage to Data Lake Storage Gen2
- Create Linked service for various data stores and compute
- Creation of Datasets that points to file and table
- Design Pipelines with various activities
- Create SQL Server on Virtual Machines( On-Premise)
- Define Copy activity and it features
- Copy Activity-Copy Behaviour
- Copy Activity_Data Integration Units
- Copy Activity- User Properties
- Copy Activity- Number of parallel copies
Module 3 : Azure Data Factory- General Activities
- Lookup Activity
- Get Metadata Activity
- Stored Procedure Activity
- Execute Pipeline Activity
- Delete Activity
- Set Variable Activity
- Script Activity
- Validation Activity
- Web Activity
- Wait Activity
- Understanding of Each Activity
- Filter Activity
Module 4 : Azure Data Factory – Interation & Conditionals
- Filter Activity
- ForEach Activity
- Switch Activity
- if Condition Activity
- Until Activity
Module 5 : Azure Data Factory – Types of Integration Runtimes
- Azure IR (Auto Resolve Integration Runtime)
- Selfhosted IR
- SSIS IR
Module 6 : Azure Data Factory – Types of Triggers
- Stoarge Event Tigger
- Schedule Trigger
- Tumbling Window Trigger
Module 7 : Introduction to DataFlows
- Filter Transformation
- Select Transformation
- Derived Column Transformation
- Aggregator Transformation
- Join Transformation
- Union Transformation
Module 8 : Practical Scenarios and Use Cases
- Practice_Session1_Copy Data from File System to Azure SQL Database
- Practice_Session2_Copy Data from Multiple Files(ADLS Gen2)To Multiple Tables(Azure SQL Database)
- Practice_Session3_Copy Data from Multiple Files(ADLS Gen2)To Multiple Tables(Azure SQL Database) Using Parameters
- Practice_Session4_Dynamically Copy Multiple Files(ADLS Gen2)To Multiple Tables(Azure SQL Database)
- Practice_Session5_Dynamically Copy Multiple Files To Multiple Tables_Lookup_GetMetadata_For-Each_If Condition Activities
- Practice_Session6_Copy Multiple CSV Files with Same Structure To Single Table
- Practice_Session7_FilteringFileFormats Using Getmetadata_Filter_ForEach_Copy_Activity
- Practice_Session8_Bulk Copy from Tables to Files Using Config Table
- Practice_Session9_Bulk Copy from Tables to Files Using Lookup Activity_Custom SQL Query
- Practice_Session10_Container Parameterization_Using Lookup and For-Each Activity
- Practice_Session11_Azure Key Vault Integration with ADF Resource
- Practice_Session12_Pipeline Execution_Success Audit log and Failure Audit Log
- Practice_Session13_Pipeline Execution Automation_Schedule Trigger_Storage Event Trigger
- Practice_Session14_Copy Data from On-Premise SQL Server to ADLS Gen2 using Self hosted IR
- Practice_Session15_Email Notifications_Logic Apps
- Practice_Session16_Incremental OR Delta Load Implementation
- Practice_Session17_ADF_Designing DataFlows
Module 9: ADF_Assignments & Case Studies
- ADF_Assignment1_Create Azure Blob Storage Account_Dala Lake Storage Gen2 Account
- ADF_Assignment2_Create Azure SQL Database Instance
- ADF_Assignment3_Data Ingestion_Copy Data Tool(CDT)
- ADF_Assignment4_Add New Columns While Copying Data
- ADF_Assignment5_CopyData Activity_Executepipeline Activity_ADLS Gen2_SQLDB
- ADF_Assignment6_FilterFileFormats based on File Size and Delete Files from Source Storage
- ADF_Assignment7_Insert Metadata_Get Metadata_Stored Procedure Activity
- ADF_Assignment8_Insert Metadata_About CSV Files in Azure Storage_Get Metadata_Stored Procedure Activity
- ADF_Assignment9_CopyData Activity_Linked Service_Dataset_Pipeline Parameters_Copy Multiple Files_To_Tables
- ADF_Assignment10_Copy Data Activity_Copy Behaviour
- ADF_Assignment11_Snowflake_Integration
- ADF_Assignment12_Snowflake_To_ADLS_Gen2_StagedCopy
- ADF_Assignment13_ADF_AWS_S3_Bucket_Integration
- ADF_Assignment14_GCP_To_ADLS_Gen2_Integration
- ADF_Assignment15_Dataflows_Rank Transformation
- ADF_Assignment16_Dataflows_Parse Transformation
- ADF_Assignment17_Dataflows_Stringfy Transformation
- ADF_Assignment18_Dataflows_SurrogateKey_Transformation
- ADF_Assignment19_Dataflows_Windows Transformation
- ADF_Assignment20_Dataflows_Coniditional Split_Transformation
- ADF_Assignment21_Dataflows_Aggregator_Sorter Transformation
- ADF_Assignment22_Dataflows_Lookup Transformation
- ADF_Assignment23_Dataflows_Exists Transformation
- ADF_Assignment24_REST API Integration
- ADF_Assignment25_Data Activity_Filter By Last Modified Date
- ADF_Assignment26_Data Activity_Copy behaviour_Preserve Hierarchy_Flatten Hierarchy_Merge Files
- ADF_Assignment27_Copy Data Activity_Filter By Last Modified Date_Dynamic Date Expressions
- ADF_Assignment28_Copy Data from JSON File To Azure SQL Database Table
- ADF_Assignment29_Execute Copy Data Activity based on File Count in the Container
- ADF_Assignment30_Copy Data Activity_List of Files Configuration
- ADF_Assignment31_Dataflows_Flatten Transformations
- ADF_Assignment32_Dataflows_Pivot Transformations
- ADF_Assignment33_Databricks Notebook_Integration with Azure Data Factory
- ADF_Assignment34_Thumbling Window Trigger_Introduction
- ADF_Assignment35_Implement_Thumbling Window Trigger
- ADF_Assignment36_Differences Between Debug VS Tigger Now
- ADF_Assignment37_Row Format Storage Internals
- ADF_Assignment38_Columnar Format Storage Internals
- ADF_Assignment39_Copy Data_On-premise File System To ADLS Gen2
- ADF_Assignment40_Copy Data from On-premise To Azure Cloud Storages
- ADF_Assignment41_Copy Data Activity_Excel File Formats
- ADF_Assignment42_Copy Data Activity_Excel File Formats_Lookup Activity_Pipeline Variables
- ADF_Assignment43_Copy Data Activity_XML File Formats
- ADF_Assignment44_Insert the Metadata about a storage Container Dynamically using Parameterized Stored Procedure
- ADF_Assignment45_Introduction To Slowly Changing Dimensions
- ADF_Assignment46_Implementation of SCD Type1 Dimension
- ADF_Assignment47_SCD Type2 Introduction
- ADF_Assignment48_SCD Type2 Implementation
Azure Synapse Analytics:
Module 1: Processing Data Using Azure Synapse Analytics
- Provisioning an Azure Synapse Analytics Workspace
- Analyzing data using serverless SQL pool
- Provisioning and configuring Spark pools
- Processing data using Spark pools and a lake database
- Querying the data in a lake database from serverless SQL pool
- Scheduling naotebooks to process data incrementally
Module 2: Synapse DataFlows
- Copying data using a Synapse data flow
- Performing data transformation using activities such as join,sort, and filter
- Monitoring data flows and pipelines
- Configuring partitions to optimize data flows
- Parameterizing mapping data flows
- handling schema changes dynamically in data flows using schema drift
Module 3: Azure Synapse SQL Pool
- Loading data into dedicated SQL pools using Polybase and T-SQL
- Loading data into dedicated SQL pools using COPY INTO
- Creating distributed tables and modifying table distribution
- Creating statistics and automating the update of statistics
Module 4: Monitering Synapse SQL and Spark Pools
- Configuring a Log Analytics workspace for Synapse SQL Pools
- A Log Analytics workspace for Synapse Spark Pools
- Using Kusto queries to monitorSQL and Spark Pools
- Creating workbooks in a log Analytics workspace to visualize monotoring data
- Monitoring table disbrution,dataskew, and index health using Syanapse DMVs
- Building monitoring dashboards for Synapse with Monitor
Module 5: Synapse Pipelines to Orchestrate Data
- Introducing Synapse Pipelines
- Integration runtime
- Azure IR
- Self Hosted IR
- Activities
- Pipelines
- Triggers
- Scheduled trigger
- Storage event Trigger
- Tumbling window Trigger
- Integration runtime
- Creating linked services
- Defining source and target datasets
- Using various activities in Synapse pipelines
- Scheduling Synapse pipelines
Module 6: Working with Python and Spark SQL in Azure Syanapse
- Pyspark (Python)
- Spark(Scala)
- .NET Spark (C#)
- Spark SQL
Module 7: Azure Synapse dedicated SQL Pool
- Hash-distributed tables
- Round-robin-distributed tables
- Replicated tables
Azure Databricks:
Module 1: Introduction to Azure Databricks
- Introduction to Databricks
- Azure Databricks Architecture
- Azure Databricks Main Concepts
- Types of Data Processing Paradigms_Traditional Data Processing Approach
- Traditional Data Processing vs Distributed Computing Framework
- Different Distributed Computing Frameworks_Hadoop vs Apache Spark
- Evolution of Azure Databricks History
Module 2: Core Databricks Concepts
- Workspace
- Notebooks
- Library
- Folder
- Repos
- Data
- Compute
- Workflows
Module 3: Types Of Clusters
- All-Purpose Clusters
- Job Clusters
- Pools
Module 4: Databricks – Internal Storage
- Databricks File System (DBFS)
Module 5: Databricks – External Storage
- Azure Blob Storage
- Azure Datalake Storage Gen2
- Azure SQL Database
- Azure Synapse Dedicated SQL Pool
- Snowflake
Module 6: Storages – Azure Credentials
- Account Access Key
- Shared Access Signature Token
- OAuth2.0 Azure Service Principal
Module 7: Databricks Notebooks – Magic Commands
- %Python or %py
- %r
- %scala
- %sql
Module 8: Databricks Utilities
- File System Utility
- Widgets Utility
- Secrets Utility
- Notebook Utility
Module 9: Bigdata File Format
- Row – Based File Formats
- CSV,TSV, and AVRO
- Columnar File Formats
- Parquet,Delta, and ORC
Module 10: CSV File Format
- Reading Data
- Reading Data from Multiple CSV Files
- Writing Data
Module 11: JSON File Format
- Single Line JSON
- Multi Line JSON
- Complex Multi Line JSON
- Arrays
- Struct Fields
Module 12: Excel File Format
- Single Sheet Reading
- Multiple Sheet Reading Using List object
- Dynamically Reading Multiple Sheets
Module 13: XML File Format
- Simple XML Files
- Complex XML Files
Module 14: Libraries
- Install Cluster Libraries
- Maven Package
- PyPI Package
- CRAN Package
Module 15: Databricks – Big Data Workloads
- Batch Processing
- Structured Streaming ( Real Time Processing)
Module 16: Databricks – Accesing Azure Data Lake
- Account Access Key
- Shared Access Signature Token
- Mounting Azure Data Lake (Service Principle)
Module 17: Spark Structured Streaming
- ReadStream
- WriteStream
- output modes
- Triggers
- Fixed Interval
- One Time
- Continues
- Managing Streams
Module 18: Azure databricks – Types of Loads
- History Load
- Incremental Load
Module 19: Notebook – Code Modularity
- %run
- dbutils.notebook.run()
Module 20: Introduction To Spark SQL Module
- Managed Tables(Internal Tables)
- DataFrame API
- Spark SQL API
- Un-Manged Tables(External Tables)
- DataFrame API
- Spark SQL API
- Temporary Views(Temporary Table)
- Global Temporary Views
Module 21: Introduction To Delta Lake
- Delta Lake Features
- ACID transactions
- Handling metadata
- Streaming and batch workfloads
- Schema enforcement
- Time travel
- Upserts and delets
- Delta Lake Components
- _delta_log(Transaction log)
- Versioned parquet files
- Delata lake Operations
- Create Table
- Upsert to a table
- Read a table
- Update a table
- Delete from a table
- Display table history
- Time table
- Clean up snapshots with VACUUM
- Delta Lake table history
- Restore a Delta table to an earlir state
- Vacuum unused data files
Module 22: Delta Lake – Slowly Changing Dimension
- Type1 Dimension
- Type2 Dimension
- Type3 Dimension
Module 23: Databricks – Azure SQL Database
- Reading Data With Jdbc Driver
- Writing Data With Jdbc Driver
Module 24: Databricks – Synapse Dedicated SQL Pool
- Reading Data From Synapse Table
- Writing Data To Synapse Table
Module 25: Databricks – Snowflake
- Reading Data From Snowflake Table
- Writing Data To Snowflake Table
Module 26: Delta Lake – Performance Optimization Technics
- OPTIMIZE a Table
- Z-ORDER by Columns
Module 27: Databricks Integration With Azure Data Factory
- Call a Notebook using Notebook Activity
- SetVariable Activity
- Trigger ADF Pipeline
Module 28: Azure Key Vault Integration With databricks
- Create Secrets
- Create SecretScope
Azure Databricks Practice Sessions :
Curriculum
You May Like
Azure Synapse
Azure Synapse Analytics and AI Course Overview The Microsoft Cloud Workshop: Azure Synapse Analytics and AI certification is a certification that validates expertise in...
Azure Data Bricks with Pyspark
About The Course Azure Databricks training(ADB) in Hyderabad is an easy, fast, and collaborative Apache spark-based analytics platform. It accelerates innovation by bringing data...
Azure Data Factory
A WordPress LMS Plugin to create WordPress Learning Management System. Turn your WP to LMS WordPress with Courses, Lessons, Quizzes & more.